pythonÓÃnumpyÅ£¶Ùµü´ú¹«Ê½
»Ø¸²£ºnumpy ¿ÉÓÃÓÚʵÏÖÅ£¶Ùµü´ú·¨£¬ÓÃÓÚÇó½â·½³ÌµÄ¸ù¡£ÏêϸÐÎò£ºnumpy µÄÌݶȺ͵ã»ýº¯Êý¿É¼ò»¯ÊµÏÖ¡£ÒªÁ죺newton_iteration(f, f_prime, x0, tol=1e-6, max_iter=100)ʹÓð취£ºÎªÄ¿µÄº¯ÊýºÍµ¼Êý½ç˵µ¥¶ÀµÄº¯Êý£¬È»ºóʹÓà x0 ³õʼÍƲâŲÓà newton_iteration¡£
ʹÓà NumPy ʵÏÖÅ£¶Ùµü´ú·¨
Å£¶Ùµü´ú·¨ÊÇÒ»ÖÖÇó½â·½³Ì¸ùµÄÊýÖµÒªÁ죬Æ乫ʽΪ£º
x[n+1] = x[n] - f(x[n]) / f'(x[n])
µÇ¼ºó¸´ÖÆ
ÆäÖУ¬f(x) ÊÇÄ¿µÄº¯Êý£¬f'(x) ÊÇÆäµ¼Êý¡£
NumPy ʵÏÖ
Á¬Ã¦Ñ§Ï°¡°PythonÃâ·ÑѧϰÌõ¼Ç£¨ÉîÈ룩¡±£»
¿ÉÒÔʹÓà NumPy ¿âÖÐµÄ gradient ºÍ dot º¯Êý¼ò»¯Å£¶Ùµü´ú·¨µÄʵÏÖ£º
import numpy as np def newton_iteration(f, f_prime, x0, tol=1e-6, max_iter=100): x = x0 for i in range(max_iter): gradient = np.gradient(f, x) x -= np.dot(gradient, gradient) / np.dot(gradient, f_prime(x)) if np.linalg.norm(gradient) <p><strong>ʹÓÃÒªÁì</strong></p><p>ʹÓô˺¯ÊýÇó½â·½³Ì f(x) = x**3 - 1µÄ¸ù£º</p><pre class="brush:php;toolbar:false">def f(x): return x**3 - 1 def f_prime(x): return 3 * x**2 x0 = 1 # ³õʼÍƲâ root = newton_iteration(f, f_prime, x0) print(root) # Êä³ö½üËƸù
µÇ¼ºó¸´ÖÆ
ÒÔÉϾÍÊÇpythonÓÃnumpyÅ£¶Ùµü´ú¹«Ê½µÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡
ÃâÔð˵Ã÷£ºÒÔÉÏչʾÄÚÈÝȪԴÓÚÏàÖúýÌå¡¢ÆóÒµ»ú¹¹¡¢ÍøÓÑÌṩ»òÍøÂçÍøÂçÕûÀí£¬°æȨÕùÒéÓë±¾Õ¾Î޹أ¬ÎÄÕÂÉæ¼°¿´·¨Óë¿´·¨²»´ú±í×ðÁú¿Ê±¹ÙÍøµÇ¼ÂËÓÍ»úÍø¹Ù·½Ì¬¶È£¬Çë¶ÁÕß½ö×ö²Î¿¼¡£±¾ÎĽӴýתÔØ£¬×ªÔØÇë˵Ã÷À´ÓÉ¡£ÈôÄúÒÔΪ±¾ÎÄÇÖÕ¼ÁËÄúµÄ°æȨÐÅÏ¢£¬»òÄú·¢Ã÷¸ÃÄÚÈÝÓÐÈκÎÉæ¼°ÓÐÎ¥¹«µÂ¡¢Ã°·¸Ö´·¨µÈÎ¥·¨ÐÅÏ¢£¬ÇëÄúÁ¬Ã¦ÁªÏµ×ðÁú¿Ê±¹ÙÍøµÇ¼ʵʱÐÞÕý»òɾ³ý¡£