×ðÁú¿­Ê±¹ÙÍøµÇ¼

pythonÓÃnumpyÅ£¶Ùµü´ú¹«Ê½

»Ø¸²£ºnumpy ¿ÉÓÃÓÚʵÏÖÅ£¶Ùµü´ú·¨ £¬ÓÃÓÚÇó½â·½³ÌµÄ¸ù ¡£ÏêϸÐÎò£ºnumpy µÄÌݶȺ͵ã»ýº¯Êý¿É¼ò»¯ÊµÏÖ ¡£ÒªÁ죺newton_iteration(f, f_prime, x0, tol=1e-6, max_iter=100)ʹÓð취£ºÎªÄ¿µÄº¯ÊýºÍµ¼Êý½ç˵µ¥¶ÀµÄº¯Êý £¬È»ºóʹÓà x0 ³õʼÍƲâŲÓà newton_iteration ¡£

ʹÓà NumPy ʵÏÖÅ£¶Ùµü´ú·¨

Å£¶Ùµü´ú·¨ÊÇÒ»ÖÖÇó½â·½³Ì¸ùµÄÊýÖµÒªÁì £¬Æ乫ʽΪ£º

x[n+1] = x[n] - f(x[n]) / f'(x[n])

µÇ¼ºó¸´ÖÆ

ÆäÖÐ £¬f(x) ÊÇÄ¿µÄº¯Êý £¬f'(x) ÊÇÆäµ¼Êý ¡£

NumPy ʵÏÖ

Á¬Ã¦Ñ§Ï°¡°PythonÃâ·ÑѧϰÌõ¼Ç£¨ÉîÈ룩¡± £»

¿ÉÒÔʹÓà NumPy ¿âÖÐµÄ gradient ºÍ dot º¯Êý¼ò»¯Å£¶Ùµü´ú·¨µÄʵÏÖ£º

import numpy as np

def newton_iteration(f, f_prime, x0, tol=1e-6, max_iter=100):
    x = x0
    for i in range(max_iter):
        gradient = np.gradient(f, x)
        x -= np.dot(gradient, gradient) / np.dot(gradient, f_prime(x))
        if np.linalg.norm(gradient) <p><strong>ʹÓÃÒªÁì</strong></p><p>ʹÓô˺¯ÊýÇó½â·½³Ì f(x) = x**3 - 1µÄ¸ù£º</p><pre class="brush:php;toolbar:false">def f(x):
    return x**3 - 1

def f_prime(x):
    return 3 * x**2

x0 = 1  # ³õʼÍƲâ

root = newton_iteration(f, f_prime, x0)
print(root)  # Êä³ö½üËƸù

µÇ¼ºó¸´ÖÆ

ÒÔÉϾÍÊÇpythonÓÃnumpyÅ£¶Ùµü´ú¹«Ê½µÄÏêϸÄÚÈÝ £¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡

ÃâÔð˵Ã÷£ºÒÔÉÏչʾÄÚÈÝȪԴÓÚÏàÖúýÌå¡¢ÆóÒµ»ú¹¹¡¢ÍøÓÑÌṩ»òÍøÂçÍøÂçÕûÀí £¬°æȨÕùÒéÓë±¾Õ¾ÎÞ¹Ø £¬ÎÄÕÂÉæ¼°¿´·¨Óë¿´·¨²»´ú±í×ðÁú¿­Ê±¹ÙÍøµÇ¼ÂËÓÍ»úÍø¹Ù·½Ì¬¶È £¬Çë¶ÁÕß½ö×ö²Î¿¼ ¡£±¾ÎĽӴýתÔØ £¬×ªÔØÇë˵Ã÷À´ÓÉ ¡£ÈôÄúÒÔΪ±¾ÎÄÇÖÕ¼ÁËÄúµÄ°æȨÐÅÏ¢ £¬»òÄú·¢Ã÷¸ÃÄÚÈÝÓÐÈκÎÉæ¼°ÓÐÎ¥¹«µÂ¡¢Ã°·¸Ö´·¨µÈÎ¥·¨ÐÅÏ¢ £¬ÇëÄúÁ¬Ã¦ÁªÏµ×ðÁú¿­Ê±¹ÙÍøµÇ¼ʵʱÐÞÕý»òɾ³ý ¡£

Ïà¹ØÐÂÎÅ

ÁªÏµ×ðÁú¿­Ê±¹ÙÍøµÇ¼

18523999891

¿É΢ÐÅÔÚÏß×Éѯ

ÊÂÇéʱ¼ä£ºÖÜÒ»ÖÁÖÜÎå £¬9:30-18:30 £¬½ÚãåÈÕÐÝÏ¢

QR code
ÍøÕ¾µØͼ